
www.manaraa.com

Entity-Relationship Approach to Software Engineering
C.G. Davis, S. Jajodia, P.A. Ng and R.T. Yeh (eds.)
Elsevier Science Publishers B.V. (North-Holland)
0 ER Inmtute, 1983

661

A VIEW OF DATABASE MANAGEMENT SYSTEMS AS ABSTRACT DATA TYPES

by

Paul K. Blackwell, Sushi1 Jajodia*, and Peter A. Ng

Department of Computer Science
University of Missouri-Columbia

Columbia, Missouri 65211
U.S.A.

In this paper, we attempt to outline a proposal of a data-
base management system which supports an entity-
relationship model, as a collection of abstract data tvpes.
Each abstract data type in this collection can be for--'
malized using algebraic axiom specification technique of
Guttag; each can then be implemented to yield a set of
interactive tools which will provide a formal and stepwise
process in the specification of a database system.

I. INTRODlJCTI@

For nearly a decade, the abstract data type (ADT) concept has been investigated
as a promising tool in software engineering and programming language design. Its
ability to provide precise implementation-independent specifications of complex
data structure led to the suggestion that it could be used to describe a database
management system (DBMS). Indeed, in recent years, several efforts have been
made to use the ADT concept to characterize particular aspects of a DBMS [3,9,16x
However, we are not aware of any work that has succeeded in integrating these
partial results into a complete specification for a DBMS.

We attempt to outline a proposal of a DBMS which supports the entity-relationship
(E-R) model as a collection of ADT's. It is our goal to formalize each ADT in
this collection using the algebraic axiom specification technique of Guttag [ll];
each can then be implemented to yield a set of interactive tools which will pro-
vide a formal and stepwise process in the specification of a database system. We
have made some progress toward our goal and describe it here.

We have chosen the E-R model [4] since it is considered more natural and "closer
to the user's conceptual model of the data" than other data models [17]. This
model is however regarded as informal [19], thus, our aim is to formalize it.

The organization of this paper is as follows. In Section II, we briefly describe
the E-R model and the E-R diagram. In Sections III and IV, we discuss the sim-
ilarities and differences between the ADT approach and the current approaches to
database design, and how a DBMS can be viewed as a collection of ADT's. In
Section V, we briefly describe the algebraic specification of the ADT Erd and
some advantages of its implementation. We discuss the application of the ADT
approach to verification and testing of database design in Section VI. Finally,
the conclusion is given in Section VII.

*The work of S. Jajodia was supported, in part, by a University of Missouri
Sumner Research Fellowship.

www.manaraa.com

662 P. K. Blackwell, S. Jajodia and P. A. Ng

. THE ENTITY-RELATIONSHIP DIAGRAM II

In this section, we briefly describe the E-R model and the E-R diagram. In the
E-R rmodel, information is described in terms of four primitive concepts, viz.,
entity, relationship, attribute and value. Entities represent things or objects
in the real world, and relationships are described by means of attributes and
their underlying value sets. Entities are classified into sets of different
types, and the relationships among entities are classified into various relation-
ship sets.

An E-R model can be represented by a graph, called an E-R diagram, as shown in
Fig. 1. Each node in the graph either corresponds to an entity set, a relation-
ship set, or a value set. Entity sets are represented by rectangular boxes,
relationship sets by diamond-shaped boxes, and value sets by circles. Participa-
tion of an entity set in a relationship set is denoted by an edge connecting the
two. An arc pointing from an entity or relationship set to the appropriate value
sets constitutes an attribute.

EMP D~-@?!ij$i!coDE a
\

EMP-NO JOB-CODE
DEPT NO -

I
MGR-NO

J- MGR-Ni c: b D# M#

d JQ b
Figure 1 An E-R Diagram

The information about entities and relationships amonq entities at any instant
can be organized in a collection of tables: entity set relations and relation-
ship set relations. For example, a database instance for the E-R diagram in
Fig. 1, is displayed in Fig. 2.

The E-R model has been shown to be an acceptable model for defining the logical
view of a database [5,6]. This model, in some sense, generalizes the three major
data models that have been used in database systems--hierarchical, network, and
relational. The E-R diaqram can be translated in a straiqhtforward manner into
a hierarchical, network,-or relational database scheme. Also, it can be imple-
mented directly [17, 181. The main advantage of the direct implementation is
that the user can formulate queries directly from the diagram, thus permitting
the user to have a basic understanding of the underlying logical organization.

III. DATABASE MANAGEMENT SYSTEMS AND ABSTRACT DATA TYPES

The ADT's have been shown to play a significant role in the development of soft-
ware that is reliable, efficient, and flexible. Since many complex systems can
be viewed as ADT's, it was suggested that ADT's be used to characterize a DBMS
Cl, 81.

We can define an ADT as a mathematical model together with various operations

www.manaraa.com

A View of Database Management Systems 663

EMP-NO

112233 JANE KNIGHT

223344 JIM SAND

334455 DON SMITH

445566 JON ZIMMER

I

DEPT NO EMPPNO

112233 1

EMP NAME -

Figure 2 An Instance of the E-R Diagram

defined on the model [l, 111. For example, we can view a stack as a sequence of
zero or more elements such that all insertions and deletions take place at one
end, called the top. The list of operations on a stack might include operations
such as PUSH, POP, TOP, ISNEW, REPLACE, etc. Unfortunately, we cannot view a
DBMS as an ADT in such a simple and straightforward way. There are several
levels of abstraction which exist in the specification of a database structure,
and each level can be viewed as an ADT. For example, the ANSI/SPARC study
group proposed a three scheme mode to support a DMBS: a set of external schemas
to meet the needs of the application programs, a single conceptual schema to
define the information needs of the organization, and a single internal schema
to describe the physical structure of the database. Each of these schemas can be
described in terms of ADT's.

There are many similarities between the ADT approach and the current approaches
to database design. An ADT permits formal specification of a data type without
any reference to an implementation. This is very close to the data independence
objective in a database, of providing a sharp and clear separation between the
physical and logical aspects of a database. The user should be able to interact
with the database at a convenient and abstract level without any knowledge of the
physical data structures, storage organizations, and access methods used to store
the data on a storage device. The ADT approach uses the "top-down" design meth-
odology which imposes a hierarchical structure on the program development; each
level of the structure represents abstractions which suppresses all irrelevant
detail while clearly exposing the relevant concepts and structures. This approach
is consistent with the usual database design methodology which calls for dividing
the database design into two steps: logical design and physical design; each step
is further subdivided into smaller steps of manageable proportions. A major
advantage of the ROT approach is that it provides a formal basis for proving the
correctness of the implementation of a data type. This can be very useful in the

www.manaraa.com

664 P. K. Blackwell, S. Jajodia and P. A. Ng

design of a database which usually is an extremely complex task. Because of
these similarities and obvious benefits , it is natural to investigate whether the
abstract data type approach can be used in the database context.

Iv.- VARIOUS LEVELS OF ABSTRACTION IN A DATABASE MANAGEMENT SYSTEM

It is generally agreed that there are at least three levels of abstraction which
exist in the specification of a DBMS: EXTERNAL LEVEL (individual user views),
CONCEPTUAL LEVEL (community user view), and INTERNAL LEVEL (storage view) [7,19].

Internal
Level

The internal level is the one which is closest to the physical storage, i.e., the
one concerned with how the data is stored permanently on secondary storage
devices. The internal schema is specified by means of a data storage description
language. The conceptual level is the abstraction of the database in its en-
tirety. A DBMS provides users with a data definition language (DDL) to describe
the conceptual database in terms of a data model such as network, relational, or
E-R Imodel. The external level is the one closest to the users and represents an
abstraction of that portion of the conceptual database which is of interest to
them. The user has at his disposal a subschema data definition language for
declaring views.

Now each level of abstraction can be viewed as a distinct abstract data type.
For example, we can think of the conceptual model and the operations defined on
it (DDL) as analooous to the stack concept and its corresponding operations (push,
pop; etc.). This-is the justification for the next section where we formalize an
E-R diaqram, which is the abstract level of an E-R model, as an abstract data
type Erd.

In addition to these three levels, there is yet another dimension to our percep-
tion of the database: instance of the database which is concerned with the actual
data present in a database. The data manipulation language (DML) is the inter-
face emoloved bv users to access or modify the contents of a database. The DML
is designed so 'that it allows the manipulation of data structures of the sort sup-
ported bv the underlvinq data model. The DML allows users to add new records to
the database, and to-look up, modify, insert or delete existing records. Again,
we can treat a database as an ALIT by viewing files (or relations) in the database
as a mathematical model and the DML as a collection of operations on the objects
of the model. It might appear that databases are different from data types such

www.manaraa.com

A View of Database Management Systems 665

as arrays or stacks in that data in a database change frequently and operations
on the objects (i.e., queries) can be quite different. A moment of reflection
shows however thatcontents of a database changes frequently, the conceptual
schema does not and basic operations on the database remain the same. For
example, any query in a language based on the relational algebra is equivalent to
an expression involving the basic relational operators such as select, project,
join, etc.

V. THE ALGEBRAIC SPECIFICATION OF ABSTRACT DATA TYPE ERD

In this section, we briefly describe the syntactic specification of the abstract
data type Erd. We urge the interested reader to consult [2] for details which
are omitted here. By definition, an algebraic axiom specification of a data type
T consists of a syntactic and semantic specification [ll]. The syntactic speci-
fication defines the names, domains, and ranges of the data type T. The semantic
specification contains a set of axioms in the form of equations which relate the
operations of T to each other.

The algebraic specifications of Erd is based on the following assumptions:

. In an E-R diagram, all entity set and relationship set names are distinct.

+ Also all pairs of attribute and value set names are distinct.

The operations on the data type Erd belong to one of these four categories:

1. CONSTRUCTOR SET OPERATIONS

The abstract data type Erd contains these constructor set operations, i.e.,
operations which satisfy the property that all instances of the data type
Erd can be represented using only constructor set operations.

a. NEWERD - Create and initialize a new E-R diagram.

b. ADDESET - Add an entity set to the E-R diagram provided it has not been
added to the E-R diagram previously.

c. ADDRSET - Add a relationship set to the E-R diagram provided all entity
sets involved in the relationship exist in the diagram and it has not
been created in the E-R diagram previously.

d. ADDAVSET - Add a (attribute, value set) pair to a particular entity or
relationship set provided the latter exists but the pair does not in the
E-R diagram.

2. HIDDEN (INTERNAL) OPERATIONS

The abstract data type Erd has these hidden operations:

a. INSERTESET - Add a particular entity set to the E-R diagram.

b. INSERTRSET - Add a particular relationship set to the E-R diagram.

c. INSERTAVSET - Add a particular (attribute, value set) pair to an entity
or relationship set in the E-R diagram.

Like the constructor set operations, it is possible to define all instances
of the data type using only hidden operations. The crucial difference is
that the.execution of these operations does not require a check as to whether
they are valid operations, so a user is not allowed to use these operations.

3. DELETE UPDRiE OPERATIONS

www.manaraa.com

P. K. Blackwell, S. Jajodia and P. A. Ng 666

4.

The
the

These operations allow the user to modify the existing E-R diagram. The oper-
ation names are DELETEESET, DELETERSET, DELETEAVSET, REPLACEESET, REPLACERSET,
and REPLACEAVSET.
is omitted.

Their functions are self-explanatory so their description

SUPPLEMENTARY OPERATIONS

These are supporting operations which allow the user to Pheck whether, for
example, a particular entity set has already been added to the E-R diagram or
simply to list all the entity sets, relationship sets and their attributes
and value sets. The operation names are LISTESET, LISTRSET, NEIGHBORHOOD,
HASESET, HASRSET, AND HASAVSET.

algebraic specification of the abstract data type Erd has been implemented at
University of Missouri - Columbia, using the PL/l language. It can be used

as an interactive tool which can play an important role in the E-R approach to
database design. Some of its advantages are given below:

a) It takes the responsibility of linking together facts (entity sets, rela-
tionship sets, attribute and value sets), thus leaving some of the tasks involv-
ing the completeness and consistency of the collected requirements to the com-
puter.

b) It checks the formal correctness of the E-R diagram which is being built
and detects inconsistencies and redundancies.

c) It produces, at the end of the whole process, an E-R diagram which can be
used to design subsequent phases.

d) With graphic capability, an E-R diagram can be generated or modified inter-
actively with a graphic display terminal. This provides a more natural graphical
form for the requirement engineer to work with, rather than using a one-
dimensional textual language. This approach employs a graphical notation for
better communication without any reduction of emphasis on rigorous formalism.

We have also given the algebraic specification of operations required for infor-
mation retrieval queries. It allows users to insert, delete, or update tuples
from entity or relationship set relations. We omit their description.

APPLICATION OF THE ABSTRACT DATA TYPE APPROACH TO VERIFICATION AND TESTING VI .
OF DATABASE DESIGN

Database design is a long and tedious process, and one of the biggest problems is
that of getting from the informal requirements of a required system to a detailed
database design in such a way that the consistency, viz., whether the E-R diagram
corresponds to the given description of the enterprise, completeness, viz.,
whether both the description of an enterprise and the E-R diagram are well
defined, and the correctness, viz., whether the implementation of an application
is correct.

At present, in the E-R approach to logical database design, information of inter-
est about the real world is organized by some ad hoc method into an enterprise
schema which is expressed in terms of an E-R diagram which can then be transformed
into an appropriate database schema, e.g., E-R schema, relational schema etc.
Because the translation from the requirements to the E-R diaqram is not a well-
defined process, it is based on the'intuitive knowledge of the meaning of the
description. Thus, it is difficult to verify, for example, whether the require-
ments are consistent with the resulting E-R diagram and.the subsequent implemen-
tation; however, formalization of the system requirements in early stages of the
software development process can lead to specifications which can be checked for
completeness, consistency, and correctness. We describe this process next.

www.manaraa.com

A View of Database Management Systems 667

Given a description of the requirements (in a certain form) of a database system,
we can view it as an abstract data type T. Thus, T can be thought of as a collec-
tion of sets, e.g., set EMP consisting of employees, set DEPT consisting of var-
ious departments etc., and a collection of allowable operations permitted on
these sets. At this point, only the different sets and how the various opera-
tions act on these sets need to be identified, not how they will be implemented.
In this way, T can be expressed formally using algebraic axioms.

The next step in the design should be to check that the specification is consis-
tent with the original requirements and sufficiently complete. Although this
cannot be performed rigorously, even an informal check will tend to expose short-
comings or inconsistencies between the formal and informal specifications.

The final set in the design is to provide implementation of the abstract data
type T. If the DML has been formalized as an abstract data type, it can be
viewed as a type concept which is available to the user for defining the applica-
tion data type T, and we can write down an implementation of T in terms of the
data type. The advantage to this approach is that now the correctness of the
implementation can be verified formally [lo, 11, 12, 131.

This approach has essentially been carried out in [9] for a restricted version of
the E-R model. The differences are that in [9], the procedural specifications
[8] instead of algebraic axioms are used to specify the data types and that it is
recommended that implementation rather than specification be tested against the
original requirements. We recommend that the specification be checked since
otherwise much effort may be wasted in implementing specifications which are in-
consistent or not sufficiently complete.

VII CONCLUSION ---A.-..-- -

In this paper, we have attempted to outline a proposal of a DBMS which supports
an E-R model, as a collection of abstract data types. We have addressed the
architectural issues that arise in terms of different levels of abstraction; but
we have not discussed facilities of database management systems which help main-
tain the logical and physical integrity of data. These topics are currently
being studied.

REFERENCES: ~.-

1.

2.

3.

4.

5.

6.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., Data Structures and Algorithms
(Addison-Wesley, Reading, Massachusetts, 1983).

Blackwell, P. K., Jajodia, S., and Ng, P. A., The Algebraic Specification of
Entity-Relationship Diagrams, Technical Report, University of Missouri-
Columbia, (1982).

Brodie, M. L., and Schmidt, J., What is the Use of Abstract Data Types in
Data Bases?, Proc. 4th Conference on Very Large Data Bases, (1978) pp. 140-
141.

Chen, P. P., The Entity-Relationship Model: Towards a Unified View of Data,
ACM Trans. on Database Systems, (1)1(1976) pp. 9-36.

Chen, P. P., (ed.), Entity-Relationship Approach to Sy;;ems Analysis and
). Design, (North Holland, Amsterdam, The Netherlands, 19

Chen, P. P., ted.), Entity-Relationship Approach to Information Modeling and
and Analysis, ER Institute, Saugus, California (1981).

www.manaraa.com

P. K. Black well, S. Jajodia and P. A. Ng 668

7.

a.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Date, C. J., An Introduction to Database Systems, 3rd Edition, (Addison-
Wesley, Reading, Massachusetts, 1981).

Furtado, A. L., and Veloso, P. A., Procedural Specification and Implementa-
tions for Abstract Data Types, ACM SIGPLAN Notices, (16)3(1981) pp. 53-62.

Furtado, A. L., Veloso, P. A. S., and deCastiho,J. M. V., Verification and
Testing of S-ER Representation, in Chen, P. (ed.), Entity-Relationship
Approach to Information Modeling and Analysis, ER Institue, Saugus,
California (1981), pp. 125-150.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B., Initial
Algebra Semantics and Continuous Algebra, Jrnl. of ACM, (24)1(1977) pp. 68-
95.

Guttag, J. V., Abstract Data Types and the Development of Data Structures,
Comm. of ACM (20)6(1977) pp. 396-404.

Guttag, J. V., Horowitz, E., and Musser, 0. R., Abstract Data Types and Soft-
ware Validation, Comm. of ACM, (21)12(1978) pp. 1048-1064.

Guttag, J. V., Horowitz, E., and Musser, D. R., The Design of Datas Type
Specifications, in Yeh, R. T. (ed.), Current Trends in Programming Method-
ology, Vol. IV, (Prentice-Hall, Englewood Cliffs, New Jersey, 1978) pp. 60-79.

Hubbard, G. U., Computer-Assisted Data Base Design, (Van Nostrand, New York,
New York, 1981).

Liskov, B. and Zilles, S., Specification Techniques for Data Abstractions,
IEEE Trans. on Software Engineering, (SE-1)1(1975) pp. 7-19.

Lockemann, P. C., Mayr, H. C., Weil, W. H., and Wohlleber, W. H., Data
Abstractions for Database Systems, ACM Trans. on Database Systems, (4)1(1979)
pp. 60-75.

Poonen, G., CLEAR a Conceptual Language for Entities and Relationships, Proc.
International Conf. on the Management of Data (1978) pp. 194-215.

Shoshani, A., CABLE: A Language Based on the Entity-Relationship Model,
Lawrence Berkeley Lab., Berkeley, California (1978).

19. Ullman, J. D., Principles of Database Systems, 2nd Edition, (Computer Science
Press, Rockville, Maryland, 1982).

